人人做人人草_av网址在线_色噜噜狠狠色综合网_免费日本黄色

全國服務(wù)咨詢熱線:

13395745986

當(dāng)前位置:首頁  >  技術(shù)文章  >  應(yīng)用案例 | T型光聲池的光聲光譜技術(shù)用于同時(shí)檢測(cè)基于三重共振模態(tài)的多組分氣體

應(yīng)用案例 | T型光聲池的光聲光譜技術(shù)用于同時(shí)檢測(cè)基于三重共振模態(tài)的多組分氣體

更新日期:2023-07-19      點(diǎn)擊次數(shù):1393
  T型光聲池的光聲光譜技術(shù)用于同時(shí)檢測(cè)基于三重共振模態(tài)的多組分氣體
 
  T-type cell mediated photoacoustic spectroscopy for simultaneous detection of multi-component gases based on triple resonance modality
 
  近日,來自西安電子科技大學(xué)、哈爾濱工業(yè)大學(xué)可調(diào)諧(氣體)激光技術(shù)國家級(jí)重點(diǎn)實(shí)驗(yàn)室的聯(lián)合研究團(tuán)隊(duì)發(fā)表了《T型光聲池的光聲光譜技術(shù)用于基于三重共振模態(tài)的多組分氣體的同時(shí)檢測(cè)》論文。
 
  Recently, the joint research team from  School of Optoelectronic Engineering, Xidian University,  National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, published an academic papers T-type cell mediated photoacoustic spectroscopy for simultaneous detection of multi-component gases based on triple resonance modality.
 
  油浸式電力變壓器是現(xiàn)代電力分配和傳輸系統(tǒng)中最重要的絕緣設(shè)備之一。通過同時(shí)測(cè)量絕緣油中的溶解氣體,如一氧化碳(CO)、甲烷(CH4)和乙炔(C2H2),可以在電力變壓器的過熱、電弧和局部放電故障的早期診斷中提供合適的解決方案。變壓器故障主要可分為過熱故障和放電故障。CO、CH4和C2H2的含量變化是變壓器故障的主要指標(biāo)。過熱故障包括裸金屬過熱、固體絕緣過熱和低溫過熱。裸金屬過熱的特征是烴類氣體(如CH4和C2H2)濃度的上升。上述兩種氣體的總和占總烴類氣體的80%以上,其中CH4占較大比例(>30 ppm)。CO的濃度(>300 ppm)強(qiáng)烈指示固體絕緣過熱和變壓器故障中的低溫過熱。當(dāng)變壓器處于放電故障時(shí),C2H2會(huì)急劇增加(>5 ppm,占總烴類氣體的20%-70%)。因此,本研究選擇CO、CH4和C2H2作為目標(biāo)分析物。傳統(tǒng)的多組分氣體定量檢測(cè)方法,如氣相色譜儀、半導(dǎo)體氣體傳感器和電化學(xué)傳感器,在實(shí)時(shí)監(jiān)測(cè)、恢復(fù)時(shí)間、選擇性和交叉敏感性方面存在一定限制。基于光聲光譜技術(shù)的光學(xué)傳感器平臺(tái)具有高靈敏度、高選擇性、快速響應(yīng)、長壽命和成熟的傳感器設(shè)備等優(yōu)點(diǎn),在多組分氣體傳感領(lǐng)域發(fā)揮著重要作用。已經(jīng)開發(fā)出多種基于光聲光譜技術(shù)的多組分氣體傳感器模式,如傅里葉變換紅外光聲光譜模式、基于寬帶檢測(cè)的熱輻射體或黑體輻射體使用多個(gè)帶通濾波器、多激光器與時(shí)分復(fù)用(TDM)方法的結(jié)合,以及采用多共振器和頻率分割復(fù)用(FDM)方案。然而,由于寬帶光源的相對(duì)弱強(qiáng)度,弱光聲(PA)信號(hào)易受到背景噪聲的干擾,這是高靈敏度檢測(cè)的主要障礙。
 
  Oil-immersed power transformer is one of the most important insulation equipment in modern power distribution and transmission systems. Simultaneous measurements of the dissolved gases in insulating oil, such as carbon monoxide (CO), methane (CH4) and acetylene (C2H2), can represent a suitable solution in early diagnosis of overheating, arcing and partial discharge failures of power transformers . Transformer fault can mainly be divided into overheating fault and discharge fault. The content changes of CO, CH4, and C2H2 are the main indicators of transformer failure. Overheating fault includes bare metal overheating, solid insulation overheating and low temperature overheating. The bare metal overheating is characterized by the rising concentration of hydrocarbon gas, such as CH4 and C2H2. The sum of the above two gases accounts for more than 80% of the total hydrocarbon gas, and CH4 accounts for a larger proportion (>30 ppm). The concentration of CO (>300 ppm) strongly indicates the solid insulation overheating and the low temperature overheating in the transformer failure. When the transformer is in discharge fault, the C2H2 will increase dramatically (>5 ppm, 20%− 70% of the total hydrocarbon gas). Therefore, CO, CH4, and C2H2 are selected as the target analytes in this work. The traditional quantitative detection of multiple analytes, such as gas chromatographs, semiconductor gas sensors and electrochemical sensors, were limited in terms of real time monitoring, recovery time, poor selectivity and cross sensitivity. Photoacoustic spectroscopy (PAS)-based optical sensor platforms, which feature the advantages of high sensitivity, high selectivity, fast response, long lifetime and well-established sensing devices, have played an important role in the field of multi-component gas sensing. Various PAS-based multi-gas sensor modalities have been developed, such as Fourier transform infrared PAS modality, broadband detection based thermal emitters or blackbody radiators using several band-pass filters, the use of multi-lasers combined time-division multiplexing (TDM) methods , and multi-resonators with frequency-division multiplexing (FDM) schemes. Due to the relatively poor intensity of the broadband source, the weak photoacoustic (PA) signals were sensitively affected by the background noise, which was a major obstacle to highly sensitive detection.
 
  由于吸收和共振圓柱體共同決定了其共振頻率,設(shè)計(jì)并驗(yàn)證了一種T型光聲池作為適當(dāng)?shù)膫鞲衅鳌Mㄟ^引入激勵(lì)光束位置優(yōu)化,從模擬和實(shí)驗(yàn)中研究了三種指定的共振模式,呈現(xiàn)了可比較的振幅響應(yīng)。使用QCL、ICL和DFB激光器作為激發(fā)光源,同時(shí)測(cè)量CO、CH4和C2H2,展示了多氣體檢測(cè)的能力。
 
  A T-type photoacoustic cell was designed and verified to be an appropriate sensor, due to the resonant frequencies of which are determined jointly by absorption and resonant cylinders. The three designated resonance modes were investigated from both simulation and experiments to present the comparable amplitude responses by introducing excitation beam position optimization. The capability of multi-gas detection was demonstrated by measuring CO, CH4 and C2H2 simultaneously using QCL, ICL and DFB lasers as excitation sources respectively.
 
  圖片顯示了配備了T型光聲池的基于PAS的多組分氣體傳感器配置的示意圖。使用三個(gè)激發(fā)激光器作為激光源,包括DFB ICL(HealthyPhoton,型號(hào)HPQCL-Q)、DFB QCL(HealthyPhoton,型號(hào)QC-Qube)和NIR激光二極管(NEL),分別在2968 cm−1、2176.3 cm−1和6578.6 cm−1處發(fā)射,以實(shí)現(xiàn)對(duì)CH4、CO和C2H2的同時(shí)檢測(cè)。ICL、QCL和NIR激光二極管在目標(biāo)吸收波長處的光功率分別為8 mW、44 mW和32 mW,通過熱功率計(jì)(Ophir Optronics 3 A)進(jìn)行測(cè)量。所有激光源都通過調(diào)節(jié)電流和溫度控制來驅(qū)動(dòng)。
 
  A schematic diagram of PAS-based multi-component gas sensor configuration equipped with the developed T-type PAC is shown in Fig. Three excitation laser sources, including a DFB ICL (HealthyPhoton, model HPQCL-Q), a DFB QCL (HealthyPhoton, model QCQube) and an NIR laser diode (NEL) emitting at 2968 cm−1, 2176.3 cm−1 and 6578.6 cm−1, were employed to realize the simultaneous detection of CH4, CO and C2H2. The optical powers of the ICL, QCL and NIR laser diode measured by a thermal power meter (Ophir Optronics 3 A) at the target absorption lines were 8 mW, 44 mW and 32 mW, respectively. All the laser sources were driven by tuning the current and temperature control.
 
圖片
  Fig.The schematic diagram of multi-resonance PAS-based gas sensor configuration equipped with the developed T-type PAC for multi-component gas simultaneous detection. Operating pressure: 760 Torr.
 
圖片
HealthyPhoton, model HPQCL-Q
 
圖片
HealthyPhoton, model QCQube
 
  結(jié)論
 
  建立了基于T型光聲池的多共振光聲光譜氣體傳感器,并驗(yàn)證其能夠進(jìn)行多組分同時(shí)檢測(cè),達(dá)到ppb級(jí)別的靈敏度。通過有限元分析(FEA)模擬優(yōu)化和實(shí)驗(yàn)光束激發(fā)位置設(shè)計(jì),三個(gè)指定的諧振頻率的光聲響應(yīng)相互比較,確保了同時(shí)檢測(cè)多種微量氣體的高性能。選擇了CO、CH4和C2H2這三種可燃?xì)怏w作為目標(biāo)氣體,使用QCL(4.59 µm,44 mW)、ICL(3.37 µm,8 mW)和NIR激光二極管(1.52 µm,32 mW)作為入射光束進(jìn)行同時(shí)檢測(cè)驗(yàn)證。F1模式下,光束照射到緩沖腔體壁上,信噪比(SNR)相比通過吸收?qǐng)A柱體的情況提高了4.5倍。實(shí)驗(yàn)得到了CO、CH4和C2H2的最小檢測(cè)限(1σ)分別為89ppb、80ppb和664ppb,對(duì)應(yīng)的歸一化噪聲等效吸收系數(shù)(NNEA)分別為5.75 × 10−7 cm−1 W Hz−1/2、1.97 × 10−8 cm−1 W Hz−1/2和4.23 × 10−8 cm−1 W Hz−1/2。對(duì)濕度交叉敏感性進(jìn)行改進(jìn)的研究提供了對(duì)光聲光譜傳感器在濕度松弛相關(guān)效應(yīng)方面的更好理解。利用單個(gè)光聲腔體和單個(gè)探測(cè)器進(jìn)行多組分氣體傳感的這種開發(fā)的光聲光譜模式,具有在電力變壓器故障的早期診斷方面的獨(dú)特潛力。
 
  Conclusions
 
  A T-type cell based multi-resonance PAS gas sensor was established and verified to be capable of multi-component simultaneous ppb-level detection. By the FEA simulation optimization and experimental beam excitation position design, the PA responses of the three designated resonant frequencies are comparable which guarantees the high performance of multiple trace gas detection simultaneously. The three combustible species of CO, CH4 and C2H2 were selected as target gases for the simultaneous detection verification using a QCL (4.59 µm, 44 mW), an ICL (3.37 µm, 8 mW) and a NIR laser diode (1.52 µm, 32 mW) as incident beams. The SNR for F1 mode with the beam irradiating on the buffer wall was increased by 4.5 times than that of passing through absorption cylinder. The experimental MDLs (1σ) were achieved as of 89ppb (CO), 80ppb (CH4) and 664ppb (C2H2) have been acquired, respectively, corresponding to the NNEA coefficients of5.75 × 10−7 cm−1 W Hz−1/2, 1.97 × 10−8 cm−1 W Hz−1/2 and 4.23 × 10−8 cm−1 W Hz−1/2. An improved humidification investigation regarding cross-sensitivity analysis provides a better understanding of PAS sensors in humidity relaxation related effects. This developed PAS modality of utilizing a single PAC and a single detector for multicomponent gas sensing exhibits unique potential for early diagnosis of power transformer failures.
 
圖片
  Simulated spectral distribution characteristics of CO, CH4 and C2H2 based on HITRAN Database. Temperature and pressure: 296 K and 1 atm respectively.
 
圖片
  Schematic structure of the developed T-type PAC.
 
圖片
  Simulated sound pressure distribution of T-type PAC model for the three selected resonance modes by FEA method. Color bar: Simulated sound pressure (Pa).
 
圖片
  Simulation results of the T-type PAC acoustic characteristics with the incident beam position optimization. (a) and (b): Two different incident ways of the excitation beam; (c), (d) and (e): The simulated pressure amplitude response vs. frequency for F1, F2 and F3 detection, respectively.
 
圖片
  The experimental results of PA signals for different resonance modes by scanning the incident excitation beam. (a) Schematic diagram of the light source scanning process in the T-type PAC. Dashed line: Central axis. (b) The PA amplitude of 100 ppm CO vs. the beam position of ICL source. (c) The PA amplitude of 50 ppm CH4 vs. the beam position of ICL source. (d) The PA amplitude of 50 ppm C2H2 vs. the beam position of DFB laser diode. Insert: The irradiated surface of PAC.
 
圖片
  The experimental results for CH4 detection with the incident beam position optimization. (a) Two different ways (I1, I2) of incident excitation beam using ICL for CH4 measurement; (b) The PA amplitude vs. frequency of F1 for the two incident ways; (c) The PA spectra of 100 ppm CH4 in the ICL tunning range using both incidence ways; (d) The PA signal amplitude of CH4 vs. gas concentration for two incidence ways.
 
圖片
  Schematic of the improved humidification system for humidity control.
 
  Reference
 
  Le Zhang, Lixian Liu, Xueshi Zhang, Xukun Yin , Huiting Huan, Huanyu Liu, Xiaoming Zhao, Yufei Ma, Xiaopeng Shao,T-type cell mediated photoacoustic spectroscopy for simultaneous detection of multi-component gases based on triple resonance modality,Photoacoustics 31 (2023) 100492.
 
  https://doi.org/10.1016/j.pacs.2023.100492
 

全國統(tǒng)一服務(wù)電話

0574-88357326

電子郵箱:info@healthyphoton.com

公司地址:浙江省寧波市鄞州區(qū)潘火街道金源路中創(chuàng)科技園1號(hào)樓305室

微信公眾號(hào)

人人做人人草_av网址在线_色噜噜狠狠色综合网_免费日本黄色

            欧美亚洲免费在线一区| 久久色中文字幕| 精品少妇一区二区三区日产乱码 | 中文av字幕一区| 三级亚洲高清视频| 色综合天天综合网天天狠天天| 久久综合色婷婷| 日本伊人午夜精品| 欧美色区777第一页| 综合电影一区二区三区 | 暴力调教一区二区三区| 久久久久久久性| 免费成人在线视频观看| 欧美精品乱码久久久久久| 亚洲视频在线一区二区| 成人免费电影视频| 久久久久久久久久久久久夜| 青青草成人在线观看| 欧美福利一区二区| 亚洲成人综合在线| 欧美在线观看视频在线| 亚洲欧美日韩成人高清在线一区| 成人激情校园春色| 国产精品美女一区二区在线观看| 国产mv日韩mv欧美| 久久久久亚洲综合| 国产一区二区精品久久| 2023国产一二三区日本精品2022| 欧美aⅴ一区二区三区视频| 在线播放一区二区三区| 五月婷婷激情综合| 欧美精品久久久久久久久老牛影院| 亚洲国产成人高清精品| 欧美性一级生活| 亚洲一区免费在线观看| 欧美色偷偷大香| 亚洲成人一区二区| 欧美日韩不卡在线| 日韩精品久久理论片| 日韩一区二区中文字幕| 久久爱www久久做| 久久男人中文字幕资源站| 国内精品视频666| 国产夜色精品一区二区av| 欧洲精品中文字幕| 午夜视频在线观看一区二区 | 久久久精品免费免费| 国产成人亚洲综合a∨猫咪| 久久精品视频一区二区| 丁香婷婷综合五月| 日韩一区在线免费观看| 色网综合在线观看| 亚洲电影你懂得| 日韩一本二本av| 国产剧情在线观看一区二区| 日本一区二区成人在线| aaa亚洲精品一二三区| 一区二区三区中文字幕精品精品| 欧美优质美女网站| 污片在线观看一区二区| 日韩欧美一区中文| 国产曰批免费观看久久久| 久久精品视频在线免费观看| 99久久99久久久精品齐齐| 亚洲一区在线看| 日韩写真欧美这视频| 国产一本一道久久香蕉| 中文字幕在线不卡| 欧美艳星brazzers| 免费av成人在线| 日本一区二区三区久久久久久久久不 | 国产欧美日产一区| 色爱区综合激月婷婷| 石原莉奈一区二区三区在线观看| 欧美mv日韩mv国产| 成人黄色免费短视频| 亚洲一区二区av在线| 欧美成人午夜电影| 成人美女在线视频| 亚洲午夜私人影院| 精品国偷自产国产一区| 99久久久久免费精品国产 | 欧美日韩一区精品| 国产一区二区精品久久| 亚洲精品中文在线影院| 欧美一区二区三区爱爱| 高清不卡一区二区| 亚洲福中文字幕伊人影院| 精品国产99国产精品| 99re亚洲国产精品| 免费看欧美女人艹b| 日本一区二区三区视频视频| 欧洲一区在线观看| 激情久久五月天| 欧美精品一卡两卡| 成人免费视频caoporn| 日韩中文字幕区一区有砖一区| 久久你懂得1024| 欧美伊人久久久久久久久影院| 国产在线看一区| 一区二区三区中文在线| 欧美精品一区二区精品网| 色先锋久久av资源部| 久久99精品久久久久久国产越南| 亚洲色图都市小说| 欧美成人一级视频| 在线亚洲一区二区| 国产另类ts人妖一区二区| 亚洲高清视频中文字幕| 欧美国产97人人爽人人喊| 91精品国产高清一区二区三区蜜臀| heyzo一本久久综合| 久久成人18免费观看| 一区二区三区毛片| 中文子幕无线码一区tr| 日韩美女一区二区三区四区| 一本大道久久a久久综合| 韩国午夜理伦三级不卡影院| 亚洲午夜精品一区二区三区他趣| 亚洲国产精品成人综合色在线婷婷| 91精品国产色综合久久不卡电影| 99视频一区二区| 国产一区二区三区四区在线观看| 亚洲成人7777| 亚洲欧美乱综合| 国产日韩欧美不卡在线| 日韩亚洲欧美一区| 欧美亚洲国产bt| 99在线热播精品免费| 国产一区不卡精品| 看片的网站亚洲| 亚洲成人av一区二区三区| 亚洲欧美另类久久久精品| 久久久久国色av免费看影院| 91麻豆精品国产91久久久资源速度| 91天堂素人约啪| 成人免费视频一区二区| 韩国成人福利片在线播放| 日日摸夜夜添夜夜添国产精品| 亚洲乱码国产乱码精品精小说| 亚洲国产成人午夜在线一区| 精品国产一区二区三区忘忧草 | 亚洲欧美成人一区二区三区| 国产精品毛片大码女人| 欧美精品一区二区蜜臀亚洲| 91精品国产高清一区二区三区蜜臀| 欧美亚洲一区三区| 色8久久精品久久久久久蜜| eeuss鲁片一区二区三区在线看| 国产成人午夜精品影院观看视频 | 蜜桃av一区二区三区电影| 三级成人在线视频| 亚洲高清三级视频| 亚洲夂夂婷婷色拍ww47 | 成人综合婷婷国产精品久久蜜臀| 国产一区二区三区免费| 国模一区二区三区白浆| 久久成人免费网站| 日本不卡一区二区三区| 日韩国产精品91| 日韩激情一二三区| 日日骚欧美日韩| 免费在线观看不卡| 麻豆国产欧美一区二区三区| 日韩影院免费视频| 日本免费新一区视频| 蜜桃视频一区二区三区在线观看 | 欧美高清视频一二三区| 91精品视频网| 69堂精品视频| 日韩一区二区三区四区五区六区| 欧美一三区三区四区免费在线看| 欧美精品乱码久久久久久| 91精品午夜视频| 欧美tk—视频vk| 国产无人区一区二区三区| 中文字幕免费观看一区| 中文字幕在线观看一区| 一区二区三区日韩| 亚洲大尺度视频在线观看| 日韩不卡手机在线v区| 美女被吸乳得到大胸91| 国产乱国产乱300精品| 大桥未久av一区二区三区中文| 成人午夜私人影院| 91麻豆高清视频| 欧美日韩国产bt| 欧美第一区第二区| 国产欧美视频一区二区| 亚洲天堂精品视频| 亚洲v精品v日韩v欧美v专区| 麻豆成人免费电影| 丰满少妇在线播放bd日韩电影| av午夜一区麻豆| 一区二区中文视频| 亚洲一区二区在线观看视频| 日产精品久久久久久久性色| 国产麻豆精品久久一二三| 99精品偷自拍| 正在播放亚洲一区|