人人做人人草_av网址在线_色噜噜狠狠色综合网_免费日本黄色

全國服務咨詢熱線:

13395745986

當前位置:首頁  >  技術文章  >  應用案例 | 使用開路傳感器系統研究溫度和濕度對N2O吸收譜和濃度的影響

應用案例 | 使用開路傳感器系統研究溫度和濕度對N2O吸收譜和濃度的影響

更新日期:2023-12-11      點擊次數:1608

近日,來自山東師范大學物理與電子科學學院的聯合研究團隊發(fā)表了一篇題為Effects of Temperature and Humidity on the Absorption Spectrum and Concentration of N2O Using an Open-Path Sensor System的研究論文。


Introduction

Since Chinas proposal of the carbon peak" and carbon neutrality" goals, the government and society have attached great importance to the problems of air pollution and global warming. Nitrous oxide (N2O) is among the six greenhouse gases under the Kyoto Protocol. N2O content is relatively low compared to carbon dioxide (CO2), but its global warming potential is about 310 times that of CO2. In addition, it is destructive to ozone (O3). There are many reasons for the changes in N2O concentrations in the atmosphere, which are partly due to anthropogenic activities, such as the widespread use of fertilizers in agricultural activities. The concentrations of other gases in the atmosphere, as well as the wind speed and direction, are all correlated with changes in N2O concentrations. At the macro level, temperature and humidity are also factors affecting the absorption coefficient of N2O gas. However, relatively few studies have been conducted on the specific effects of temperature and humidity on N2O gas, and analysis has also been lacking on the influence of temperature and humidity on the absorption spectrum and the concentration of N2O. Moreover, some uncertainty and variability remain in the observations of the relationship between N2O gas concentrations and temperature and humidity. The reasons for these discrepancies may be regional differences, differences in observation methods, and imperfections in data, which are all important bases for measuring the N2O concentration in atmospheric, medical, combustion, and agricultural processes. Thus, further research and exploration, combined with additional field observations and modeling experiments, can uncover the mechanism of temperature and humidity on the N2O concentration. Consequently, providing a scientific basis for this concentration is essential for reducing N2O emissions, controlling climate change, and promoting sustainable development and environmental protection.


簡介

自中國提出“碳峰值"和“碳中和"目標以來,政府和社會對空氣污染和全球變暖問題給予了極大關注。N2O是《京都議定書》下的六種溫室氣體之一。與二氧化碳(CO2)相比,N2O含量相對較低,但其全球變暖潛力約為CO2310倍。此外,它對臭氧(O3)具有破壞性。大氣中N2O濃度的變化有許多原因,部分原因是人類活動造成的,例如在農業(yè)活動中廣泛使用化肥。大氣中其他氣體的濃度以及風速和風向都與N2O濃度的變化相關。在宏觀水平上,溫度和濕度也是影響N2O氣體吸收系數的因素。然而,對溫度和濕度對N2O氣體具體影響的研究相對較少,對溫度和濕度對N2O吸收譜和濃度的影響分析也不足。此外,在N2O氣體濃度與溫度和濕度之間的關系觀察中仍存在一些不確定性和變異性。導致這些差異的原因可能是地區(qū)差異、觀測方法差異以及數據的不完善,這些都是測量大氣、醫(yī)療、燃燒和農業(yè)過程中N2O濃度的重要基礎。因此,進一步的研究和探索,結合更多的現場觀測和建模實驗,可以揭示溫度和濕度對N2O濃度的機制。因此,為減少N2O排放、控制氣候變化,促進可持續(xù)發(fā)展和環(huán)境保護提供科學依據至關重要。


Experimental Details

Sensor Setup

Based on WMS technology and an open optical path, an open optical-path detection system for detecting N2O gas in the atmosphere was built. The schematic diagram is shown in Figure 1. The sensor system is composed of a light-source module, photoelectric Remote Sens. 2023, 15, 5390 4 of 11 detection module, and data processing module. The light-source module mainly consists of signal generation, a laser drive, QCL, and an indication light source. To effectively realize the tunable characteristics of laser emission wavelength, we designed the signal generator plate to generate a high-frequency sine wave signal with a frequency of 10 kHz to realize the modulation function and to generate a low-frequency sawtooth wave signal with a frequency of 10 Hz to realize the scanning function. The two signals are superimposed on the laser driver, controls the temperature and central emission wavelength of QCL and converts it into an injection current acting on the detection light source QCL so that the emission wavelength of QCL is in the tunable range of 2203.7–2204.1 cm?1.


實驗細節(jié)

傳感器設置

基于波長調制光譜學(WMS)技術和開路光學路徑,建立了一種用于檢測大氣中N2O氣體的開路光學路徑檢測系統。示意圖如圖1所示。該傳感器系統由光源模塊、光電檢測模塊和數據處理模塊組成。光源模塊主要包括信號生成、激光驅動、量子級聯激光器(QCL)和指示光源。為了有效實現激光發(fā)射波長的可調特性,我們設計了信號生成器板,生成頻率為10 kHz的高頻正弦波信號以實現調制功能,并生成頻率為10 Hz的低頻鋸齒波信號以實現掃描功能。這兩個信號疊加在激光驅動器上,控制QCL的溫度和中心發(fā)射波長,并將其轉化為作用于檢測光源QCL的注入電流,使QCL的發(fā)射波長處于2203.7–2204.1 cm-1的可調范圍內。

Fig 1(1).png

Figure 1. Schematic diagram of N2O open optical sensor system.

項目使用的激光驅動器是寧波海爾欣光電科技有限公司的QC750-TouchTM量子級聯激光屏顯驅動器。

l集成電流及溫控驅動,功能完備;

l溫度控制驅動采用非PWM式的連續(xù)電流輸出控制,大大延長TEC器件的使用壽命;

l多種輸出安全保護機制,保護QCL使用安全:可調電流鉗制、輸出緩啟動、過壓欠壓保護、超溫保護、繼電器短路輸出保護;

l大電流軟鉗制功能,避免誤操作大電流損壞激光管;

lUI界面顯示便于用戶操作使用及數據觀測;

l全自主研發(fā),集成度高,性價比高。

QC750-Touch™(1).jpg

QC750-TouchTM, Ningbo HealthyPhoton Technology, Co., Ltd.


Selection of N2O Transitions

To achieve effective detection of N2O gas molecules, we need to select the absorption line intensity and the emission central wavelength of the laser. First, combined with the HITRAN-2016 database, the wave number range of 2000–2250 cm?1 was selected to analyze the region of the absorption spectral line intensity of N2O, and then carbon monoxide (CO), carbon dioxide (CO2), and water (H2O) molecules were simulated and analyzed, as shown in Figure 2. Within this wave number range, the absorption spectra of CO2 were mainly distributed within the 2000–2081 cm?1 range, and the absorption spectra of CO gas were distributed within the 2025–2200 cm?1 wave number range. The absorption spectra of N2O gas were distributed before the 2020 cm?1 wave number range. The absorption spectra of N2O gas molecules were mainly distributed in the 2200–2250 cm?1 wave number range, and they were far from the absorption spectra of water vapor and other gases, reducing interference. At around 2203.7 cm?1 , the absorption spectra of N2O gas were the strongest. Therefore, we set the position of the N2O absorption line to 2203.7333 cm?1, which was used as the wave number of the QCL emission center. The corresponding spectral line intensity was 7.903 × 10?19 (cm?1 .mol?1 ). The central current and temperature of QCL were set at 330 mA and 36.0 ?C, respectively.


N2O躍遷的選擇

為了有效檢測N2O氣體分子,我們需要選擇吸收線強度和激光的發(fā)射中心波長。首先,結合HITRAN-2016數據庫,選擇了2000–2250 cm?1的波數范圍,以分析N2O吸收光譜線強度的區(qū)域,然后對一氧化碳(CO)、二氧化碳(CO2)和水(H2O)分子進行了模擬和分析,如圖2所示。在這個波數范圍內,CO2的吸收光譜主要分布在2000–2081 cm?1范圍內,CO氣體的吸收光譜分布在2025–2200 cm?1波數范圍內。H2O氣體的吸收光譜分布在2020 cm?1波數范圍之前。N2O氣體分子的吸收光譜主要分布在2200–2250 cm?1波數范圍內,遠離水蒸氣和其他氣體的吸收光譜,減少了干擾。在2203.7 cm?1左右,N2O氣體的吸收光譜達到峰值。因此,我們將N2O吸收線的位置設置為2203.7333 cm?1,用作QCL發(fā)射中心的波數。相應的光譜線強度為7.903 × 10?19cm?1·mol?1)。QCL的中心電流和溫度分別設置為330 mA和36.0 ℃。

Figure 2. The intensity distribution of absorption lines of N2O, CO, CO2, and H2O in the range of 2000–2250 cm?1.


Conclusions

In this study, we investigated the effects of temperature and humidity on the concentration of N2O and its absorption spectra using an open-path sensor system. By combining theoretical analysis and field monitoring, we first conducted monitoring of N2O in a campus environment, analyzing the effects of temperature on its concentration and absorption spectra. We discovered that the concentration of N2O would increase correspondingly with the increase in temperature. The influence of humidity on N2O concentration was monitored under the condition that the ambient temperature of the laboratory remained unchanged. The concentration of N2O was negatively correlated with humidity. The 2f and 1f signals under different temperature and humidity levels were extracted for analysis. We found that the higher the temperature, the smaller the peak value of the 2f and the 1f signals, which accords with the trend of the Gaussian function changing with temperature. Under different humidity conditions, the lower the humidity, the larger the 2f signal peak; the higher the humidity, the smaller the 2f signal. This study is of great significance for analyzing the relationship between N2O and environmental parameters such as temperature and humidity. We hope that our research findings can assist environmental agencies in formulating more effective environmental policies for different environments. In the future, we can use QCL to analyze the relationship between N2O and other environmental and gas parameters.


結論

在本研究中,我們利用開路傳感器系統研究了溫度和濕度對N2O濃度及其吸收光譜的影響。通過理論分析和現場監(jiān)測相結合,我們首先在校園環(huán)境中進行了N2O監(jiān)測,分析了溫度對其濃度和吸收光譜的影響。我們發(fā)現隨著溫度升高,N2O濃度相應增加。在實驗室環(huán)境中,保持環(huán)境溫度不變的條件下監(jiān)測了濕度對N2O濃度的影響。N2O濃度與濕度呈負相關。在不同溫度和濕度水平下提取并分析了2f和1f信號。我們發(fā)現溫度越高,2f和1f信號的峰值越小,這與高斯函數隨溫度變化的趨勢相符。在不同濕度條件下,濕度越低,2f信號峰值越大;濕度越高,2f信號越小。這項研究對分析N2O與溫度、濕度等環(huán)境參數之間的關系具有重要意義。我們希望我們的研究結果能夠協助環(huán)境機構為不同環(huán)境制定更有效的環(huán)境政策。未來,我們可以利用QCL來分析N2O與其他環(huán)境和氣體參數之間的關系。


參考:

Effects of Temperature and Humidity on the Absorption Spectrum and Concentration of N2O Using an Open-Path Sensor System, Remote Sens. 2023, 15, 5390.


全國統一服務電話

0574-88357326

電子郵箱:info@healthyphoton.com

公司地址:浙江省寧波市鄞州區(qū)潘火街道金源路中創(chuàng)科技園1號樓305室

微信公眾號

人人做人人草_av网址在线_色噜噜狠狠色综合网_免费日本黄色

            欧美一区二区在线看| 久久人人爽爽爽人久久久| 538在线一区二区精品国产| 国产亚洲va综合人人澡精品 | 视频一区欧美日韩| 成人一区二区三区视频在线观看 | 国产精品免费aⅴ片在线观看| 亚洲国产日韩a在线播放| 国产超碰在线一区| 日韩欧美一区二区视频| 亚洲成人免费视| 色综合久久久久综合体| 国产亚洲精品资源在线26u| 蜜臂av日日欢夜夜爽一区| 91电影在线观看| 18成人在线视频| 国产精品自拍三区| 欧美一级日韩不卡播放免费| 一区二区不卡在线播放 | 日韩欧美国产麻豆| 午夜精品福利一区二区蜜股av| av电影在线观看不卡| 国产亚洲一二三区| 极品少妇xxxx精品少妇偷拍| 日韩一卡二卡三卡国产欧美| 婷婷成人激情在线网| 欧美性大战久久| 一个色综合av| 在线国产电影不卡| 亚洲黄色性网站| 色综合色综合色综合| 国产精品护士白丝一区av| 成人久久久精品乱码一区二区三区| 久久久另类综合| 激情六月婷婷久久| 精品少妇一区二区三区视频免付费 | 亚洲人成网站精品片在线观看| 成人国产在线观看| 中文字幕不卡在线| 成人久久18免费网站麻豆| 国产亲近乱来精品视频| 国产高清亚洲一区| 国产丝袜在线精品| 国产成人啪免费观看软件| 久久精品夜夜夜夜久久| 国产成人在线视频网址| 国产欧美久久久精品影院| 国产成人av福利| 国产精品午夜在线| 99久久99久久综合| 一区二区在线免费观看| 欧美亚洲免费在线一区| 亚洲线精品一区二区三区| 欧美视频一区在线观看| 亚欧色一区w666天堂| 91麻豆精品国产91久久久久久 | 欧美一区二区三区播放老司机| 日韩综合在线视频| 精品国产一区二区三区久久久蜜月 | 亚洲人成网站精品片在线观看| 色综合天天综合网天天看片| 亚洲精品欧美在线| 欧美日韩一区二区三区视频| 日本欧美一区二区| 亚洲精品一区二区在线观看| 国产成人a级片| 亚洲精品中文字幕乱码三区 | 一区二区三区在线高清| 欧美亚一区二区| 日韩电影在线看| 久久亚洲精华国产精华液| 国产成人av影院| 亚洲免费看黄网站| 欧美日本一区二区三区四区| 麻豆久久久久久久| 国产精品私人自拍| 欧美色综合影院| 久88久久88久久久| 国产精品剧情在线亚洲| 欧美专区亚洲专区| 麻豆一区二区三| 国产精品精品国产色婷婷| 精品视频一区二区三区免费| 久久国产综合精品| 国产精品久久久久一区二区三区共 | 在线免费观看视频一区| 欧美a级理论片| 国产精品网曝门| 欧美日韩国产综合一区二区三区| 蜜桃91丨九色丨蝌蚪91桃色| 国产女主播视频一区二区| 在线视频欧美区| 精品一区二区三区不卡 | 福利一区二区在线| 亚洲在线免费播放| 久久亚洲二区三区| 在线精品视频免费播放| 卡一卡二国产精品| 成人欧美一区二区三区| 欧美一区二区美女| 成人h版在线观看| 日本aⅴ免费视频一区二区三区| 国产免费观看久久| 欧美巨大另类极品videosbest | 国产精品免费网站在线观看| 欧美日韩卡一卡二| 国产一区二区三区在线观看免费视频 | 午夜久久久影院| 亚洲国产精品黑人久久久 | 亚洲国产精品综合小说图片区| 日韩欧美一区二区视频| 99久久久精品| 精品一区二区三区欧美| 一区二区三区欧美日| 久久你懂得1024| 欧美日本在线播放| 99久免费精品视频在线观看| 日本 国产 欧美色综合| 亚洲视频免费观看| 久久亚区不卡日本| 欧美喷水一区二区| 99久久精品免费| 韩国成人在线视频| 日韩综合在线视频| 伊人夜夜躁av伊人久久| 日本一区二区综合亚洲| 777久久久精品| 在线精品视频一区二区| 岛国精品在线播放| 久久成人av少妇免费| 亚洲福利国产精品| 中文字幕一区二区三区色视频| 日韩久久久精品| 欧美日韩精品欧美日韩精品| 91偷拍与自偷拍精品| 国产精品一区不卡| 美女视频黄 久久| 亚洲一二三四久久| 成人免费在线播放视频| 久久综合九色综合97_久久久| 欧美精三区欧美精三区| 色av一区二区| 99久久99久久精品免费看蜜桃| 韩国av一区二区三区四区| 轻轻草成人在线| 婷婷一区二区三区| 亚洲成人福利片| 一区二区在线观看av| 中文字幕一区二区三| 欧美国产精品一区| 久久久综合精品| 精品粉嫩aⅴ一区二区三区四区| 欧美久久久久中文字幕| 欧美日精品一区视频| 在线亚洲欧美专区二区| 91同城在线观看| 99国产精品99久久久久久| 成人免费观看男女羞羞视频| 国产经典欧美精品| 国产精品2024| 国产激情91久久精品导航| 国内国产精品久久| 极品美女销魂一区二区三区| 美国欧美日韩国产在线播放| 日本欧美大码aⅴ在线播放| 丝袜亚洲另类欧美综合| 婷婷六月综合网| 日韩av网站在线观看| 日韩国产欧美在线视频| 日韩精品免费视频人成| 全国精品久久少妇| 免费成人你懂的| 精品一区二区久久| 韩国成人福利片在线播放| 国产一区二区三区在线看麻豆| 国产乱码精品一区二区三| 国产精品综合网| 国产成人精品三级| av在线不卡观看免费观看| 91小视频在线| 在线免费观看日本一区| 欧美日韩日日夜夜| 91麻豆精品国产自产在线| 日韩欧美第一区| 国产亚洲欧美色| 综合在线观看色| 一区二区免费看| 天天av天天翘天天综合网| 日本三级亚洲精品| 精品一区二区三区视频在线观看| 国产一区二区三区日韩| 成人黄色免费短视频| 91福利精品视频| 欧美高清激情brazzers| 欧美www视频| 亚洲国产成人自拍| 亚洲激情校园春色| 日本人妖一区二区| 国产成人综合网| 91黄色免费网站|